186 research outputs found

    Learnable MFCCs for Speaker Verification

    Get PDF
    We propose a learnable mel-frequency cepstral coefficient (MFCC) frontend architecture for deep neural network (DNN) based automatic speaker verification. Our architecture retains the simplicity and interpretability of MFCC-based features while allowing the model to be adapted to data flexibly. In practice, we formulate data-driven versions of the four linear transforms of a standard MFCC extractor -- windowing, discrete Fourier transform (DFT), mel filterbank and discrete cosine transform (DCT). Results reported reach up to 6.7\% (VoxCeleb1) and 9.7\% (SITW) relative improvement in term of equal error rate (EER) from static MFCCs, without additional tuning effort.Comment: Accepted to ISCAS 202

    A Comparative Re-Assessment of Feature Extractors for Deep Speaker Embeddings

    Get PDF
    Modern automatic speaker verification relies largely on deep neural networks (DNNs) trained on mel-frequency cepstral coefficient (MFCC) features. While there are alternative feature extraction methods based on phase, prosody and long-term temporal operations, they have not been extensively studied with DNN-based methods. We aim to fill this gap by providing extensive re-assessment of 14 feature extractors on VoxCeleb and SITW datasets. Our findings reveal that features equipped with techniques such as spectral centroids, group delay function, and integrated noise suppression provide promising alternatives to MFCCs for deep speaker embeddings extraction. Experimental results demonstrate up to 16.3\% (VoxCeleb) and 25.1\% (SITW) relative decrease in equal error rate (EER) to the baseline.Comment: Accepted to Interspeech 202
    • …
    corecore